So. Jagrangians/Hamiltonians in classical mechanics
and geometric quantization

Zet N be an n-dimensional smooth manifold
and denote by TN its tangent bundle.

Definition:
Zet
$$Z(t, x, \bar{z})$$
 be a "Jagrangian" definedoveTN
with $x = (x_1, \dots, x_n) \in N, \bar{z} = (z_1, \dots, \bar{z}_n) \in TN,$
and $\gamma : [a, b] \rightarrow N$ a smooth curve on N
Then
 $S = \int Z(t, \gamma(t), \gamma'(t)) dt$
is called the "action integral".

A critical point of the action satisfies
 $\frac{d}{dt} \frac{\partial T}{\partial T_1} = \frac{\partial T}{\partial x_1}, \quad j = 1, \dots, n$
"Euler- Zagrange equations"

 $Z = \frac{1}{2} m \sum_{j=1}^{\infty} x_j^2 - V,$ where V is a potential,
gives back Newton's equations for a porticle.

Next, let M be a smooth manifold of dimension
2n. A "symplectic form"
$$\omega$$
 is a non-degenerate,
closed 2-form on M. ($\omega \neq 0$ on M)
Definition:
A smooth manifold equipped with a symplectic
form is called a "symplectic manifold.
Given a smooth vector field X on M, the
correspondence $X \mapsto c(X) \omega$ gives isomorphism
bet ween 1-forms on $M \iff$ smooth vector
fields on M
Definition (Hamiltonian vector field):
Xet f be a smooth function on M.
Define vector field X_f by
 $c(X_f) \omega = df$
X_f is "Hamiltonian vector field" for f.
Definition (Dimension vector field for f.

$$\frac{\text{Definition}}{\{\text{For smooth functions f and g on M, define}}$$

$$\frac{\{f_i, g_i\}}{\{f_i, g_i\}} = -w(X_{\text{f}_i}, X_{\text{g}_i})$$

We have

$$w(X_{f}, X_{q}) = c(X_{f})w(X_{q}) = df(X_{f}) = X_{f}f = -X_{f}g$$
Denote by X(M) the space of smooth vector fields
on M. Then

$$[X_{1}Y]f = X(Y_{f}) - Y(X_{f}), f \in C^{\infty}(M),$$

$$\Rightarrow X(M) \text{ is equipped with a Yie algebra structure.}$$

$$C^{\infty}(M) \text{ is a Zie algebra by the Poisson bracket and we have the following relation:}$$

$$[X_{f}, X_{q}] = X_{f_{1}g_{1}}^{2}$$

$$\Rightarrow f \mapsto X_{f} \text{ defines a Zie-algebra homomorphism}$$

$$Consider a smooth function H on M called the "Hamiltonian" and the associated vector field X_{H}. Then
$$\frac{df}{dt} = X_{H}f = \{H, f\} \Rightarrow \frac{dH}{dt} = \{H, H\} = 0$$$$

Complex line bundles and quantization Let M be a smooth manifold and E a smooth vector bundle on M. Denote • T*Mc : complexification of T*M • T(E): space of smooth sections of E T(T*Mc⊗E): space of smooth sections of T*Mr⊗E Definition (connection): A "connection" on E is a C-linear map $\nabla: \Gamma(E) \longrightarrow \Gamma(T^*M_c \otimes E)$ such that the Leibniz rule $\Delta(ts) = qt \otimes s + t\Delta(s)$ holds for $f \in C^{\infty}(f)$ and $s \in T(E)$. Definition (covariant devivative): For a vector field XET(T*Me) define a linear map $\nabla_{x}: T(E) \to T(E)$ by $(\nabla_{\mathsf{X}} \mathsf{S})(\mathsf{X}) = (\nabla \mathsf{S})(\mathsf{X}_{\mathsf{X}}) .$

Definition (complex line bundle):
A "complex line bundle" is a complex
vector bundle of rank 1.
Xet L be a complex line bundle with
Hermitian metric over M.
open covering:
$$M = \bigcup_i \bigcup_i \Rightarrow \bigsqcup_i \bigcup_i Over \bigcup_i$$

(trivialization of L)
Xet ∇ be a connection on L given by
 $\nabla = d - 2\pi \overline{1-1}d_i$ on \bigcup_i ,
where d_i is 1-form on \bigcup_i .
Definition (first Chem class):
 dv_i defines a global 2-form on M, the
"first Chem-form" of ∇ , denoted by $C_i(\nabla)$.
Its de Rham cohomology class $[C_i(\nabla)] = H^2(M, \mathbb{R})$
is called "first Chern class" of L.
We have
 $[C_i(\nabla)] \in Imc_i,$
where $c: H^2(M, \mathbb{Z}) \Rightarrow H^2(M, \mathbb{R})$
is the inclusion map

· classical Hamiltonian mechanics :

$$\frac{df}{dt} = \{H, f\}$$

Using
$$w(X_{f}, X_{g}) = -\{f, g\}$$
, one can verify
 $[\hat{f}, \hat{g}] = \{f, g\}$
 $\rightarrow f \mapsto \hat{f} \text{ determines a representation of}$
 $C^{\infty}(M)$ on \mathcal{H} as a Lie algebra.

Example:
N = Rⁿ -> M = T*N with symplectic form

$$\omega = \sum_{j=1}^{n} dp_{j} \wedge dq_{j}$$

i=1 / Coordinates an N
coordinates
m TN

Define a connection on the trivial line bundle $L = M \times C$ by: $\nabla = d - \sqrt{-1} th^{-1} \theta, \ \theta = \sum_{i=1}^{n} p_i dq_i$

For a section s: $M \rightarrow L$ define $\tilde{f} s = \sqrt{-1} t_i \nabla_{x_f} s + \hat{f} s$ $\rightarrow \tilde{p}_i = -\sqrt{-1} t_i \frac{\partial}{\partial q_i}, \quad \tilde{q}_i = \sqrt{-1} t_i \frac{\partial}{\partial P_i} + \hat{q}_i$

Let \mathcal{H}_{0} be the subspace of $T(\mathcal{M}, \mathcal{L})$ consisting of \mathcal{L}^{2} sections depending only an $q_{1}, \dots, q_{n} \longrightarrow Far S \in \mathcal{H}_{0}: \tilde{P}_{j}S = -I - I t_{n} \frac{\partial}{\partial q_{j}}S, q_{1}S = q_{j}S$

→ recovered canonical quantization in
quantum mechanics
Definition (Polarization):
Zet (M, W) be a symplectic manifold
of dimension in and TMc the
complexified tangent bundle.
Vp CTMc subbundle is integrable
if: for X, Y: M→ Vp ⇒ [X,Y]:M→Vp
Vp is "Zagrangian" if
H xe M: dim (Vp)x=n and
WWpx=0
A Zagrangian Vp is called "polarization",
if it is integrable.
Define
$$H(p = \{s \in H | \nabla_x s = 0, X \in T(M, Vp)\}$$

quantum Hilbert space
Definition (Kähler polarization):
Zet (M,W) be a Kähler manifold, set Vp=TM⁽⁶⁾)
→ $Hp = H^o(M,L)$ space of holomorphic
sections